Home
Class 12
MATHS
int(1)/(cos^(2) x-3 sin^(2) x)dx...

`int(1)/(cos^(2) x-3 sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\cos^2 x - 3 \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\cos^2 x - 3 \sin^2 x} \, dx \] ### Step 2: Divide by \(\cos^2 x\) Next, we divide the numerator and the denominator by \(\cos^2 x\): \[ I = \int \frac{1/\cos^2 x}{1 - 3 \tan^2 x} \, dx \] This simplifies to: \[ I = \int \frac{\sec^2 x}{1 - 3 \tan^2 x} \, dx \] ### Step 3: Factor Out 3 Now, we can factor out 3 from the denominator: \[ I = \frac{1}{3} \int \frac{3 \sec^2 x}{1 - 3 \tan^2 x} \, dx \] ### Step 4: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, we have: \[ \sec^2 x \, dx = dt \] Thus, we can rewrite the integral as: \[ I = \frac{1}{3} \int \frac{dt}{1 - 3t^2} \] ### Step 5: Use the Integral Formula We can use the formula for the integral: \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \] Here, \( a^2 = \frac{1}{3} \) implies \( a = \frac{1}{\sqrt{3}} \). Thus: \[ I = \frac{1}{3} \cdot \frac{1}{2 \cdot \frac{1}{\sqrt{3}}} \ln \left| \frac{\frac{1}{\sqrt{3}} + t}{\frac{1}{\sqrt{3}} - t} \right| + C \] ### Step 6: Simplify the Expression Now, simplifying gives: \[ I = \frac{1}{2\sqrt{3}} \ln \left| \frac{\frac{1}{\sqrt{3}} + \tan x}{\frac{1}{\sqrt{3}} - \tan x} \right| + C \] ### Step 7: Final Answer Thus, the final answer is: \[ I = \frac{1}{2\sqrt{3}} \ln \left| \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals

int(1)/(3sin^(2) x+4 cos^(2) x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

Evaluate: int1/(cos2x+3sin^2x)\ dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx

int(1)/(sin x cos x + 2cos^(2)x)dx

3. int(dx)/(sin^(2)x+cos^(2)x)