Home
Class 12
MATHS
int(1)/(sin x cos x + 2cos^(2)x)dx...

`int(1)/(sin x cos x + 2cos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin x \cos x + 2 \cos^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin x \cos x + 2 \cos^2 x} \, dx \] We can factor out \(\cos^2 x\) from the denominator: \[ I = \int \frac{1}{\cos^2 x \left(\frac{\sin x}{\cos x} + 2\right)} \, dx \] This simplifies to: \[ I = \int \frac{1}{\cos^2 x \left(\tan x + 2\right)} \, dx \] ### Step 2: Substitute for Secant Since \(\frac{1}{\cos^2 x} = \sec^2 x\), we rewrite the integral: \[ I = \int \frac{\sec^2 x}{\tan x + 2} \, dx \] ### Step 3: Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \). Thus, we can rewrite the integral in terms of \( t \): \[ I = \int \frac{1}{t + 2} \, dt \] ### Step 4: Integrate The integral of \(\frac{1}{t + 2}\) is: \[ I = \ln |t + 2| + C \] ### Step 5: Substitute Back Now, substituting back \( t = \tan x \): \[ I = \ln |\tan x + 2| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \ln |\tan x + 2| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/((2 sin x + cos x)^(2))dx

int(1)/(sin x - cos x +sqrt(2))dx equals

int(sin x cos^(3)x)/(1+cos^(2)x)dx

int(1)/(3+2 sin x +cos x)dx

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/((sin x-2 cos x) (2 sin x+c osx))dx

Evaluate int(x^(2)+n(n-1))/((x sin x + n cos x)^(2))dx .