Home
Class 12
MATHS
int(1)/((sin x-2 cos x) (2 sin x+c osx))...

`int(1)/((sin x-2 cos x) (2 sin x+c osx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{(\sin x - 2 \cos x)(2 \sin x + \cos x)} \, dx, \] we will follow these steps: ### Step 1: Expand the Denominator First, we expand the product in the denominator: \[ (\sin x - 2 \cos x)(2 \sin x + \cos x) = 2 \sin^2 x + \sin x \cos x - 4 \sin x \cos x - 2 \cos^2 x. \] Combining like terms gives us: \[ 2 \sin^2 x - 3 \sin x \cos x - 2 \cos^2 x. \] ### Step 2: Rewrite the Integral Now we can rewrite the integral as: \[ \int \frac{dx}{2 \sin^2 x - 3 \sin x \cos x - 2 \cos^2 x}. \] ### Step 3: Divide by \(\cos^2 x\) Next, we divide the numerator and denominator by \(\cos^2 x\): \[ \int \frac{1}{\frac{2 \sin^2 x}{\cos^2 x} - \frac{3 \sin x}{\cos x} - 2} \cdot \frac{dx}{\cos^2 x}. \] This simplifies to: \[ \int \frac{\sec^2 x \, dx}{2 \tan^2 x - 3 \tan x - 2}. \] ### Step 4: Substitution Let \( t = \tan x \). Then, \( \sec^2 x \, dx = dt \), and the integral becomes: \[ \int \frac{dt}{2t^2 - 3t - 2}. \] ### Step 5: Factor the Quadratic Next, we factor the quadratic in the denominator: \[ 2t^2 - 3t - 2 = (2t + 1)(t - 2). \] ### Step 6: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{1}{(2t + 1)(t - 2)} = \frac{A}{2t + 1} + \frac{B}{t - 2}. \] Multiplying through by the denominator gives: \[ 1 = A(t - 2) + B(2t + 1). \] ### Step 7: Solve for A and B Setting up the equations by substituting suitable values for \( t \): 1. Let \( t = 2 \): \[ 1 = A(2 - 2) + B(2 \cdot 2 + 1) \implies 1 = 5B \implies B = \frac{1}{5}. \] 2. Let \( t = -\frac{1}{2} \): \[ 1 = A(-\frac{1}{2} - 2) + B(2(-\frac{1}{2}) + 1) \implies 1 = A(-\frac{5}{2}) + B(0) \implies A = -\frac{2}{5}. \] ### Step 8: Rewrite the Integral Substituting \( A \) and \( B \) back into the integral gives: \[ \int \left(-\frac{2}{5(2t + 1)} + \frac{1}{5(t - 2)}\right) dt. \] ### Step 9: Integrate Now we can integrate term by term: \[ -\frac{2}{5} \int \frac{1}{2t + 1} dt + \frac{1}{5} \int \frac{1}{t - 2} dt. \] This results in: \[ -\frac{2}{5} \cdot \frac{1}{2} \ln |2t + 1| + \frac{1}{5} \ln |t - 2| + C = -\frac{1}{5} \ln |2t + 1| + \frac{1}{5} \ln |t - 2| + C. \] ### Step 10: Substitute Back Substituting \( t = \tan x \) back into the equation gives: \[ -\frac{1}{5} \ln |2 \tan x + 1| + \frac{1}{5} \ln |\tan x - 2| + C. \] ### Final Answer Combining the logarithms, we get: \[ \frac{1}{5} \ln \left|\frac{\tan x - 2}{2 \tan x + 1}\right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/((2 sin x + cos x)^(2))dx

int(1)/(3+2 sin x +cos x)dx

int(sin x+x cos x)/(x sin x)dx

" Prove that " : int(2 sin x +3 cos x)/(3sin x+4 cos x) dx = (18x)/(25) +(1)/(25)log|3s sin x+ 4cosx|c

int(1)/(sin x cos x + 2cos^(2)x)dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

int(1)/(sin x - cos x +sqrt(2))dx equals

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=