Home
Class 12
MATHS
int(1)/(5+2 cos x)dx...

`int(1)/(5+2 cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{1}{5 + 2 \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Cosine Function We start by rewriting the cosine function using the identity: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Substituting this into the integral gives: \[ I = \int \frac{1}{5 + 2 \left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right)} \, dx \] ### Step 2: Simplify the Denominator We can simplify the denominator: \[ 5 + 2 \cos x = 5 + 2 \left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) = \frac{5(1 + \tan^2\left(\frac{x}{2}\right)) + 2(1 - \tan^2\left(\frac{x}{2}\right))}{1 + \tan^2\left(\frac{x}{2}\right)} \] This simplifies to: \[ \frac{(5 + 2) + (5 - 2) \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{7 + 3 \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 3: Substitute and Change Variables Now, substituting this back into the integral gives: \[ I = \int \frac{1 + \tan^2\left(\frac{x}{2}\right)}{7 + 3 \tan^2\left(\frac{x}{2}\right)} \, dx \] Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ dx = \frac{2}{1 + t^2} \, dt \] Substituting this into the integral: \[ I = \int \frac{1 + t^2}{7 + 3t^2} \cdot \frac{2}{1 + t^2} \, dt = 2 \int \frac{1}{7 + 3t^2} \, dt \] ### Step 4: Evaluate the Integral The integral \( \int \frac{1}{7 + 3t^2} \, dt \) can be solved using the formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] In our case, \( a^2 = 7 \) and \( x^2 = 3t^2 \), so \( a = \sqrt{7} \). Thus: \[ I = 2 \cdot \frac{1}{\sqrt{7}} \cdot \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{\frac{7}{3}}}\right) + C \] ### Step 5: Back Substitute for \( t \) Since \( t = \tan\left(\frac{x}{2}\right) \), we substitute back: \[ I = \frac{2}{\sqrt{21}} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{\frac{7}{3}}}\right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{2}{\sqrt{21}} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{\frac{7}{3}}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(5+4 cos x)dx

int(1)/(7+5 cos x)dx=

Evaluate : int (1)/(5+4 cos x)dx

int(1)/(1-cos 2x) dx

int_(0)^(pi) (1)/(5+2 cos x)dx

int(1)/( 1+cos 2x ) dx

int (x)/( 1+cos x) dx=?

Evaluate : int1/(1+cos x)dx

int 1/(2+cos x)dx

int(1)/(sin x - cos x +sqrt(2))dx equals