Home
Class 12
MATHS
int(1)/(5-4 sin x)dx...

`int(1)/(5-4 sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{5 - 4 \sin x} \, dx \), we will use a substitution method along with some trigonometric identities. ### Step 1: Substitute for \(\sin x\) We can use the identity for \(\sin x\) in terms of tangent: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Let \( t = \tan \frac{x}{2} \). Then, we have: \[ \sin x = \frac{2t}{1 + t^2} \] ### Step 2: Rewrite the integral Substituting \(\sin x\) into the integral gives: \[ I = \int \frac{1}{5 - 4 \left( \frac{2t}{1 + t^2} \right)} \, dx \] This simplifies to: \[ I = \int \frac{1}{5 - \frac{8t}{1 + t^2}} \, dx \] ### Step 3: Simplify the denominator To simplify the denominator, multiply both the numerator and the denominator by \(1 + t^2\): \[ I = \int \frac{1 + t^2}{5(1 + t^2) - 8t} \, dx \] ### Step 4: Change of variable for \(dx\) Using the substitution \( t = \tan \frac{x}{2} \), we have: \[ dx = \frac{2}{1 + t^2} \, dt \] Substituting this into the integral gives: \[ I = \int \frac{1 + t^2}{5(1 + t^2) - 8t} \cdot \frac{2}{1 + t^2} \, dt \] This simplifies to: \[ I = 2 \int \frac{1}{5(1 + t^2) - 8t} \, dt \] ### Step 5: Complete the square in the denominator The denominator can be rewritten as: \[ 5(1 + t^2) - 8t = 5t^2 - 8t + 5 \] Completing the square gives: \[ 5\left(t^2 - \frac{8}{5}t + 1\right) = 5\left(\left(t - \frac{4}{5}\right)^2 + \frac{9}{25}\right) \] ### Step 6: Substitute back into the integral Now, substituting this back into the integral: \[ I = 2 \int \frac{1}{5\left(\left(t - \frac{4}{5}\right)^2 + \frac{9}{25}\right)} \, dt \] This can be simplified to: \[ I = \frac{2}{5} \int \frac{1}{\left(t - \frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} \, dt \] ### Step 7: Use the arctangent formula Using the formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] we have: \[ I = \frac{2}{5} \cdot \frac{5}{3} \tan^{-1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C \] This simplifies to: \[ I = \frac{2}{3} \tan^{-1} \left( \frac{5t - 4}{3} \right) + C \] ### Step 8: Substitute back for \(t\) Recall that \( t = \tan \frac{x}{2} \): \[ I = \frac{2}{3} \tan^{-1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{5 - 4 \sin x} \, dx = \frac{2}{3} \tan^{-1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3+4 sin x)dx

int(1)/(5+4 cos x)dx

Evaluate : int (1)/(4+5 sin x)dx

(1) int(dx)/(5+4 sin x)

Evaluate int(1)/(sin x- sin 2x)dx .

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

Evaluate the following integration int (sin 4x)/(sin x)dx

int(1)/(sqrt(1-sin x))dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx