Home
Class 12
MATHS
int(1)/(3+2 sin x +cos x)dx...

`int(1)/(3+2 sin x +cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{1}{3 + 2 \sin x + \cos x} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Trigonometric Functions We start by rewriting \(\sin x\) and \(\cos x\) in terms of \(\tan \frac{x}{2}\) using the identities: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \quad \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}. \] Let \(t = \tan \frac{x}{2}\). Then we can substitute these into the integral: \[ I = \int \frac{1}{3 + 2 \left(\frac{2t}{1+t^2}\right) + \left(\frac{1 - t^2}{1+t^2}\right)} \, dx. \] ### Step 2: Simplify the Denominator Now, we simplify the denominator: \[ 3 + 2 \left(\frac{2t}{1+t^2}\right) + \left(\frac{1 - t^2}{1+t^2}\right) = 3 + \frac{4t}{1+t^2} + \frac{1 - t^2}{1+t^2}. \] Combining the terms gives: \[ = \frac{(3 + 1)(1 + t^2) + 4t}{1 + t^2} = \frac{4 + 4t + 2t^2}{1 + t^2} = \frac{2t^2 + 4t + 4}{1 + t^2}. \] ### Step 3: Rewrite the Integral Thus, we have: \[ I = \int \frac{1 + t^2}{2t^2 + 4t + 4} \, dx. \] ### Step 4: Change of Variables We know that \[ dx = \frac{2}{1+t^2} \, dt. \] Substituting this into the integral gives: \[ I = \int \frac{1 + t^2}{2t^2 + 4t + 4} \cdot \frac{2}{1+t^2} \, dt = 2 \int \frac{1}{2t^2 + 4t + 4} \, dt. \] ### Step 5: Factor the Denominator Next, we factor the denominator: \[ 2t^2 + 4t + 4 = 2(t^2 + 2t + 2) = 2\left((t+1)^2 + 1\right). \] ### Step 6: Complete the Integral Thus, we can rewrite the integral as: \[ I = \int \frac{2}{2((t+1)^2 + 1)} \, dt = \int \frac{1}{(t+1)^2 + 1} \, dt. \] ### Step 7: Use the Inverse Tangent Formula Using the formula for the integral of the form \(\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C\), we have: \[ I = \tan^{-1}(t + 1) + C. \] ### Step 8: Substitute Back Finally, substituting back \(t = \tan \frac{x}{2}\): \[ I = \tan^{-1}\left(\tan \frac{x}{2} + 1\right) + C. \] ### Final Answer Thus, the final result is: \[ I = \tan^{-1}\left(\tan \frac{x}{2} + 1\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/((2 sin x + cos x)^(2))dx

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

int sin x cos(cos x)dx

int(1)/(sin x - cos x +sqrt(2))dx equals

int(1)/((sin x-2 cos x) (2 sin x+c osx))dx

Evaluate: (i) int sin^4x/cos^8xdx (ii) int1/sqrt(sin^3 x cos^5x)dx

int(1)/(3sin^(2) x+4 cos^(2) x)dx

int (1)/(sqrt(sin^(3) x cos x))dx =?

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

int(1)/(sin^(2)x-4 cos^(2)x)dx