Home
Class 12
MATHS
int(1)/(4+5 cosx)dx...

`int(1)/(4+5 cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{4 + 5 \cos x} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the integral using a trigonometric identity We know that \( \cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \). Let's substitute this into the integral. \[ I = \int \frac{1}{4 + 5 \left( \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \right)} \, dx \] ### Step 2: Simplify the denominator We can rewrite the denominator: \[ 4 + 5 \left( \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \right) = \frac{(4 + 5) + (5 - 4)\tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} = \frac{9 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \] Thus, we have: \[ I = \int \frac{1 + \tan^2(\frac{x}{2})}{9 - \tan^2(\frac{x}{2})} \, dx \] ### Step 3: Substitute \( t = \tan(\frac{x}{2}) \) Now, let \( t = \tan(\frac{x}{2}) \). Then, we have: \[ dx = \frac{2}{1 + t^2} \, dt \] ### Step 4: Substitute in the integral Substituting \( t \) and \( dx \) into the integral gives: \[ I = \int \frac{1 + t^2}{9 - t^2} \cdot \frac{2}{1 + t^2} \, dt = 2 \int \frac{1}{9 - t^2} \, dt \] ### Step 5: Use the formula for integration The integral \( \int \frac{1}{a^2 - x^2} \, dx \) is given by: \[ \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \] In our case, \( a = 3 \) and \( x = t \): \[ I = 2 \cdot \frac{1}{2 \cdot 3} \ln \left| \frac{3 + t}{3 - t} \right| + C = \frac{1}{3} \ln \left| \frac{3 + t}{3 - t} \right| + C \] ### Step 6: Substitute back \( t = \tan(\frac{x}{2}) \) Now, substituting back \( t = \tan(\frac{x}{2}) \): \[ I = \frac{1}{3} \ln \left| \frac{3 + \tan(\frac{x}{2})}{3 - \tan(\frac{x}{2})} \right| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{4 + 5 \cos x} \, dx = \frac{1}{3} \ln \left| \frac{3 + \tan(\frac{x}{2})}{3 - \tan(\frac{x}{2})} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int (1)/(1-cosx)dx

Evaluate: int1/(5+4cosx)dx

int(1)/(cosx-sinx)dx is equal to

Evaluate: int1/(5+4cosx)\ dx

Evaluate: int1/(5-4cosx)\ dx

Evaluate: int1/(4cosx-1)\ dx

int(dx)/(1+cosx)

Evaluate: int1/(2+cosx)\ dx

Evaluate: int1/(2+cosx)\ dx

Evaluate: int(1-sinx)/(x+cosx)dx