Home
Class 12
MATHS
int(1)/(3+4 sin x)dx...

`int(1)/(3+4 sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{3 + 4 \sin x} \, dx \), we will follow a systematic approach. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{3 + 4 \sin x} \, dx \] ### Step 2: Use the Identity for \(\sin x\) We can use the identity for \(\sin x\): \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Let \( t = \tan \frac{x}{2} \). Then, we have: \[ \sin x = \frac{2t}{1 + t^2} \] Substituting this into the integral gives: \[ I = \int \frac{1}{3 + 4 \left(\frac{2t}{1 + t^2}\right)} \, dx \] ### Step 3: Simplify the Integral The integral becomes: \[ I = \int \frac{1 + t^2}{3(1 + t^2) + 8t} \, dx \] Now, we need to express \(dx\) in terms of \(dt\). The relationship between \(dx\) and \(dt\) is given by: \[ dx = \frac{2}{1 + t^2} \, dt \] ### Step 4: Substitute \(dx\) in the Integral Substituting \(dx\) into the integral: \[ I = \int \frac{1 + t^2}{3(1 + t^2) + 8t} \cdot \frac{2}{1 + t^2} \, dt \] This simplifies to: \[ I = 2 \int \frac{1}{3 + 8t + 3t^2} \, dt \] ### Step 5: Complete the Square Next, we need to complete the square in the denominator: \[ 3t^2 + 8t + 3 = 3\left(t^2 + \frac{8}{3}t + 1\right) \] Completing the square: \[ t^2 + \frac{8}{3}t + 1 = \left(t + \frac{4}{3}\right)^2 - \frac{16}{9} + 1 = \left(t + \frac{4}{3}\right)^2 - \frac{7}{9} \] Thus, we rewrite the integral: \[ I = \frac{2}{3} \int \frac{1}{\left(t + \frac{4}{3}\right)^2 - \left(\frac{\sqrt{7}}{3}\right)^2} \, dt \] ### Step 6: Use the Integral Formula This integral can be solved using the formula: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \] Applying this: \[ I = \frac{2}{3} \cdot \frac{1}{2 \cdot \frac{\sqrt{7}}{3}} \ln \left| \frac{t + \frac{4}{3} - \frac{\sqrt{7}}{3}}{t + \frac{4}{3} + \frac{\sqrt{7}}{3}} \right| + C \] Simplifying gives: \[ I = \frac{1}{\sqrt{7}} \ln \left| \frac{t + \frac{4 - \sqrt{7}}{3}}{t + \frac{4 + \sqrt{7}}{3}} \right| + C \] ### Step 7: Substitute Back for \(t\) Recall that \( t = \tan \frac{x}{2} \): \[ I = \frac{1}{\sqrt{7}} \ln \left| \frac{\tan \frac{x}{2} + \frac{4 - \sqrt{7}}{3}}{\tan \frac{x}{2} + \frac{4 + \sqrt{7}}{3}} \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{3 + 4 \sin x} \, dx = \frac{1}{\sqrt{7}} \ln \left| \frac{\tan \frac{x}{2} + \frac{4 - \sqrt{7}}{3}}{\tan \frac{x}{2} + \frac{4 + \sqrt{7}}{3}} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(5-4 sin x)dx

Evaluate : int (1)/(4+5 sin x)dx

(1) int(dx)/(5+4 sin x)

int(1)/(1+3 sin ^(2)x)dx is equal to

int(1)/(3-2sin^(2)x)dx

int(1)/(3-2sin^(2)x)dx

Evaluate int(1)/(sin x- sin 2x)dx .

Evaluate: int1/(3+sin2x)dx

Evaluate: int1/(3+sin2x)dx

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to