Home
Class 12
MATHS
int (3-4 sin x)/(cos^(2) x) dx=?...

` int (3-4 sin x)/(cos^(2) x) dx=?`

A

`4 tan x +4 sec x+c`

B

` 3 tan x + 4 sec x+ c`

C

` 4 tan x +3 sec x+c`

D

` 3 tan x - 4 sec x+ c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3 - 4 \sin x}{\cos^2 x} \, dx \), we can follow these steps: ### Step 1: Separate the Integral We can separate the integral into two parts: \[ \int \frac{3 - 4 \sin x}{\cos^2 x} \, dx = \int \frac{3}{\cos^2 x} \, dx - \int \frac{4 \sin x}{\cos^2 x} \, dx \] ### Step 2: Rewrite the Integrals We know that \( \frac{1}{\cos^2 x} = \sec^2 x \) and \( \frac{\sin x}{\cos^2 x} = \tan x \sec x \). Therefore, we can rewrite the integrals as: \[ \int \frac{3}{\cos^2 x} \, dx = 3 \int \sec^2 x \, dx \] \[ \int \frac{4 \sin x}{\cos^2 x} \, dx = 4 \int \tan x \sec x \, dx \] ### Step 3: Integrate Each Part Now we can integrate each part: 1. The integral of \( \sec^2 x \) is \( \tan x \): \[ 3 \int \sec^2 x \, dx = 3 \tan x \] 2. The integral of \( \tan x \sec x \) is \( \sec x \): \[ 4 \int \tan x \sec x \, dx = 4 \sec x \] ### Step 4: Combine the Results Combining the results from the two integrals, we get: \[ \int \frac{3 - 4 \sin x}{\cos^2 x} \, dx = 3 \tan x - 4 \sec x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \frac{3 - 4 \sin x}{\cos^2 x} \, dx = 3 \tan x - 4 \sec x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (2-3 sin x)/(cos^(2) x) dx

Evaluate : int ( " 4+3 sin x ")/(" cos"^(2) x) " dx "

int(2-3 cos x)/(sin^(2) x)dx

int(sin^2x)/(cos^(4)x)dx

int(sin2x)/(cos x)*dx

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx

int (sin2x)/(sin^4x+cos^4x) dx

int (sin2x)/(sin^4x+cos^4x) dx

int(x sin x+cos x)/(x cos x)dx

int(sin x)/(3+4 cos^(2)x)dx = …………………