Home
Class 12
MATHS
int (1-cos x)/(1+cos x) dx=?...

`int (1-cos x)/(1+cos x) dx=?`

A

`2 tan ((x)/(2))+ x+c`

B

` tan ((x)/(2)) + x+c`

C

`tan ((x)/(2)) + 2x + c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \cos x}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral using trigonometric identities We know that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] and \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Therefore, we can rewrite the integral as: \[ \int \frac{1 - \cos x}{1 + \cos x} \, dx = \int \frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] The 2s in the numerator and denominator cancel out: \[ = \int \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Simplify the integral Using the identity \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \), we can rewrite the integral as: \[ = \int \tan^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Use the identity for \( \tan^2 \) Recall that: \[ \tan^2 \theta = \sec^2 \theta - 1 \] Thus, we can express the integral as: \[ = \int \left(\sec^2\left(\frac{x}{2}\right) - 1\right) \, dx \] This can be separated into two integrals: \[ = \int \sec^2\left(\frac{x}{2}\right) \, dx - \int 1 \, dx \] ### Step 4: Solve the integrals For the first integral, we can use a substitution. Let \( t = \frac{x}{2} \), then \( dx = 2 \, dt \): \[ \int \sec^2\left(\frac{x}{2}\right) \, dx = \int \sec^2(t) \cdot 2 \, dt = 2 \int \sec^2(t) \, dt \] The integral of \( \sec^2(t) \) is \( \tan(t) \): \[ = 2 \tan(t) + C = 2 \tan\left(\frac{x}{2}\right) + C \] For the second integral: \[ \int 1 \, dx = x \] ### Step 5: Combine the results Putting it all together, we have: \[ \int \tan^2\left(\frac{x}{2}\right) \, dx = 2 \tan\left(\frac{x}{2}\right) - x + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{1 - \cos x}{1 + \cos x} \, dx = 2 \tan\left(\frac{x}{2}\right) - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (1-sinx )/ (1-cos x) dx=?

int(1+cos 2x)/(1-cos 2x)dx

Evaluate: (i) int(tanx+cotx)^2\ dx (ii) int(1-cos2x)/(1+cos2x)\ dx

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

int (x)/( 1+cos x) dx=?

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

int (1-cosx) /(cos x(1+cos x)) dx

int(1)/(cos x . cot x ) dx

Evaluate: int(sin x)/(cos x(1+cos x))dx

int(cos x)/(1+sinx) dx