Home
Class 12
MATHS
int(-2)^(2) X sin^(10) x dx =?...

`int_(-2)^(2) X sin^(10) x dx =?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} x \sin^{10}(x) \, dx \), we can follow these steps: ### Step 1: Identify the Function Let \( f(x) = x \sin^{10}(x) \). ### Step 2: Check if the Function is Odd or Even To determine if \( f(x) \) is odd or even, we need to evaluate \( f(-x) \): \[ f(-x) = -x \sin^{10}(-x) \] Using the property of sine, \( \sin(-x) = -\sin(x) \), we can rewrite this as: \[ f(-x) = -x (-\sin(x))^{10} = -x \sin^{10}(x) \] Thus, we have: \[ f(-x) = -f(x) \] This shows that \( f(x) \) is an odd function. ### Step 3: Use the Property of Integrals of Odd Functions The property of integrals states that if \( f(x) \) is an odd function, then: \[ \int_{-a}^{a} f(x) \, dx = 0 \] for any \( a \). ### Step 4: Apply the Property Since our function \( f(x) = x \sin^{10}(x) \) is odd, we can apply this property: \[ \int_{-2}^{2} x \sin^{10}(x) \, dx = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{-2}^{2} x \sin^{10}(x) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(-pi/2)^(pi/2) |sin x| dx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

(sum_(n=1)^10int_(-2n-1)^(-2n)sin^(27)(x)dx+sum_(n=1)^10int_(2n)^(2n+1)sin^(27)(x)dx)

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx