Home
Class 12
MATHS
int(-4)^(4) log ((7-x )/(7+x)) dx=?...

`int_(-4)^(4) log ((7-x )/(7+x)) dx=?`

A

`4`

B

`-4`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-4}^{4} \log\left(\frac{7-x}{7+x}\right) \, dx \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{-4}^{4} \log\left(\frac{7-x}{7+x}\right) \, dx \] ### Step 2: Check for Evenness or Oddness To determine if the function is even or odd, we need to evaluate \( f(-x) \): \[ f(x) = \log\left(\frac{7-x}{7+x}\right) \] Now, substitute \( -x \) into the function: \[ f(-x) = \log\left(\frac{7-(-x)}{7+(-x)}\right) = \log\left(\frac{7+x}{7-x}\right) \] ### Step 3: Simplify \( f(-x) \) Using the property of logarithms, we can rewrite \( f(-x) \): \[ f(-x) = \log\left(\frac{7+x}{7-x}\right) = -\log\left(\frac{7-x}{7+x}\right) = -f(x) \] This shows that \( f(-x) = -f(x) \), which means that \( f(x) \) is an odd function. ### Step 4: Apply the Property of Odd Functions Since \( f(x) \) is an odd function, we can use the property of integrals of odd functions: \[ \int_{-a}^{a} f(x) \, dx = 0 \] for any odd function \( f(x) \). ### Step 5: Conclude the Result Therefore, we have: \[ I = \int_{-4}^{4} \log\left(\frac{7-x}{7+x}\right) \, dx = 0 \] ### Final Answer \[ \int_{-4}^{4} \log\left(\frac{7-x}{7+x}\right) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx dx

int_(0)^(9) x(a^(2)-x^(2))^(7/2)dx

int_(0)^(pi) x log sinx\ dx

int(cos^(2) (log .x))/(x)dx

The volue of the ddefinite integral int _(0)^(oo) (ln x )/(x ^(2) +4)dx is:

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

int_(1)^(4) log_(e)[x]dx equals

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,