Home
Class 12
MATHS
Choose the correct answer intsqrt(x^2-8x...

Choose the correct answer `intsqrt(x^2-8x+7)dx` (A) `1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C` (B) `1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C` (C) `1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C` (D) `1/2(x-4)sqrt(x^2-8x+7)-

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{x^2 - 8x + 7} \, dx \), we will follow these steps: ### Step 1: Complete the Square First, we need to rewrite the expression under the square root in a more manageable form. The expression is \( x^2 - 8x + 7 \). To complete the square: \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x - 4)^2 - 3^2 \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \sqrt{x^2 - 8x + 7} \, dx = \int \sqrt{(x - 4)^2 - 3^2} \, dx \] ### Step 3: Use the Integral Formula We will use the formula for the integral of the form \( \int \sqrt{x^2 - a^2} \, dx \): \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C \] In our case, we have \( x \) replaced by \( x - 4 \) and \( a = 3 \). ### Step 4: Substitute into the Formula Substituting \( x - 4 \) into the formula, we get: \[ \int \sqrt{(x - 4)^2 - 3^2} \, dx = \frac{x - 4}{2} \sqrt{(x - 4)^2 - 3^2} - \frac{3^2}{2} \log \left| (x - 4) + \sqrt{(x - 4)^2 - 3^2} \right| + C \] ### Step 5: Simplify the Expression Now, simplifying the expression: 1. The term \( \sqrt{(x - 4)^2 - 3^2} \) simplifies to \( \sqrt{x^2 - 8x + 7} \). 2. The term \( \frac{3^2}{2} = \frac{9}{2} \). Thus, we have: \[ \int \sqrt{x^2 - 8x + 7} \, dx = \frac{x - 4}{2} \sqrt{x^2 - 8x + 7} - \frac{9}{2} \log \left| (x - 4) + \sqrt{x^2 - 8x + 7} \right| + C \] ### Final Result The final answer can be expressed as: \[ \frac{1}{2}(x - 4) \sqrt{x^2 - 8x + 7} - \frac{9}{2} \log \left| (x - 4) + \sqrt{x^2 - 8x + 7} \right| + C \] ### Conclusion From the options provided, we can see that this matches option (C): \[ \frac{1}{2}(x - 4)\sqrt{x^2 - 8x + 7} - 3\sqrt{2}\log|x - 4 + \sqrt{x^2 - 8x + 7}| + C \]

To solve the integral \( \int \sqrt{x^2 - 8x + 7} \, dx \), we will follow these steps: ### Step 1: Complete the Square First, we need to rewrite the expression under the square root in a more manageable form. The expression is \( x^2 - 8x + 7 \). To complete the square: \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x - 4)^2 - 3^2 ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.8|6 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.9|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.6|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer intsqrt(1+x^2)dx is equal to(A) x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C (B) 2/3(1+x^2)^(3/2)+C (C) 2/3x(1+x^2)^(3/2)+C (D) (x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C

Evaluate: int(3x+5)/sqrt(x^2-8x+7)\ dx

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))