Home
Class 12
MATHS
int 0^1 (xe^x+sin(pi x/4))dx...

`int _0^1 (xe^x+sin(pi x/4))dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int_0^1 \left( x e^x + \sin\left(\frac{\pi x}{4}\right) \right) dx, \] we can separate the integral into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

Evaluate: int_(0)^(pi) e^(2x) sin ((pi)/(4) + x)dx

int_(0)^( pi)(dx)/(1+sin x)

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi) sin 3x dx