Home
Class 12
MATHS
Choose the correct answer int1sqrt(3)(dx...

Choose the correct answer `int1sqrt(3)(dx)/(1+x^2)` equals (A) `pi/3` (B) `(2pi)/3` (C) `pi/6` (D) `pi/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} \] ### Step 2: Use the known integral formula We know that: \[ \int \frac{dx}{1+x^2} = \tan^{-1}(x) + C \] Thus, we can rewrite our integral using this formula: \[ I = \left[ \tan^{-1}(x) \right]_{1}^{\sqrt{3}} \] ### Step 3: Apply the limits Now we will evaluate the integral by applying the limits: \[ I = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \] ### Step 4: Calculate the values of the arctangent We know that: - \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \) (since \( \tan(\frac{\pi}{3}) = \sqrt{3} \)) - \( \tan^{-1}(1) = \frac{\pi}{4} \) (since \( \tan(\frac{\pi}{4}) = 1 \)) Thus, we can substitute these values into our expression: \[ I = \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 5: Simplify the expression To subtract these fractions, we need a common denominator. The least common multiple of 3 and 4 is 12: \[ I = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{(4\pi - 3\pi)}{12} = \frac{\pi}{12} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{12} \] ### Conclusion The correct answer is (D) \( \frac{\pi}{12} \). ---

To solve the integral \( I = \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer int_1^sqrt(3) (dx)/(1+x^2) equals(A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

Choose the correct answer int_0^(2/3) (dx)/(4+9x^2) (A) pi/6 (B) pi/(12) (C) pi/(24) (D) pi/4

Choose the correct answer int0 2/3(dx)/(4+9x^2) (A) pi/6 (B) pi/(12) (C) pi/(24) (D) pi/4

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

int_1^(sqrt(3))1/(1+x^2)dx is equal to a. pi/(12) b. pi/4 c. pi/6 d. pi/3

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

Choose the correct answerThe Value of int_(-pi/2)^(pi/2)(x^3+xcosx+tan^5x+1)dx is(A) 0 (B) 2 (C) pi (D) 1

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these