Home
Class 12
MATHS
int(0)^(pi/2) (sinx)/(1+cos^(2)x)dx...

`int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( \cos x = t \). Then, the differential \( dx \) can be expressed in terms of \( dt \): \[ dx = -\frac{1}{\sin x} dt \] Since \( \sin^2 x + \cos^2 x = 1 \), we have \( \sin x = \sqrt{1 - t^2} \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.9|22 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(pi) (xsinx)/(1+cos^(2)x)dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(0)^(pi) x sin x cos^(2)x\ dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^( pi)(dx)/(1+cos^(2)x)

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to