Home
Class 12
MATHS
" If " f(x) =int(0)^(x)" t sin t dt teh...

`" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) defined as: \[ f(x) = \int_{0}^{x} t \sin t \, dt \] We will use integration by parts to evaluate this integral. ### Step 1: Identify \( u \) and \( dv \) We choose: - \( u = t \) (which means \( du = dt \)) - \( dv = \sin t \, dt \) (which means \( v = -\cos t \)) ### Step 2: Apply Integration by Parts Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute our choices: \[ f(x) = \left[ t (-\cos t) \right]_{0}^{x} - \int_{0}^{x} (-\cos t) \, dt \] ### Step 3: Evaluate the Boundary Term Calculating the boundary term: \[ \left[ t (-\cos t) \right]_{0}^{x} = -x \cos x - (0 \cdot (-\cos 0)) = -x \cos x \] ### Step 4: Evaluate the Remaining Integral Now we need to evaluate the integral: \[ \int_{0}^{x} \cos t \, dt \] The integral of \( \cos t \) is \( \sin t \), so: \[ \int_{0}^{x} \cos t \, dt = \left[ \sin t \right]_{0}^{x} = \sin x - \sin 0 = \sin x \] ### Step 5: Combine Results Putting everything together, we have: \[ f(x) = -x \cos x + \sin x \] ### Step 6: Differentiate \( f(x) \) Now, we differentiate \( f(x) \) to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(-x \cos x + \sin x) \] Using the product rule on the first term: \[ f'(x) = -\left( \cos x + x (-\sin x) \right) + \cos x \] This simplifies to: \[ f'(x) = -\cos x + x \sin x + \cos x = x \sin x \] Thus, the final answer is: \[ f'(x) = x \sin x \]

To solve the problem, we need to find the function \( f(x) \) defined as: \[ f(x) = \int_{0}^{x} t \sin t \, dt \] We will use integration by parts to evaluate this integral. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.9|22 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=int_0^x(sint)/t dt ,x >0, then

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_0^x tf(t)dt+2, then