Home
Class 12
MATHS
cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(c...

`cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(cos alpha)^(1//2)]=x` then `sin x`=

A

`tan^(2) (alpha//2)`

B

`cot^(2)(alpha//2)`

C

`tan alpha`

D

`cot alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}[(\cos \alpha)^{1/2}] - \tan^{-1}[(\cos \alpha)^{1/2}] = x \) and find \( \sin x \), we will follow these steps: ### Step 1: Rewrite the equation We can express \( (\cos \alpha)^{1/2} \) as \( \sqrt{\cos \alpha} \). Thus, we rewrite the equation as: \[ \cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x \] ### Step 2: Use the cotangent and tangent identity We know from trigonometric identities that: \[ \cot^{-1}(y) + \tan^{-1}(y) = \frac{\pi}{2} \] for any \( y \). Therefore, we can rewrite the equation as: \[ \cot^{-1}(\sqrt{\cos \alpha}) + \tan^{-1}(\sqrt{\cos \alpha}) = \frac{\pi}{2} \] ### Step 3: Add the two equations Adding the two equations gives: \[ \cot^{-1}(\sqrt{\cos \alpha}) + \tan^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x + \frac{\pi}{2} \] This simplifies to: \[ \cot^{-1}(\sqrt{\cos \alpha}) = x + \frac{\pi}{2} \] ### Step 4: Solve for \( x \) From the above equation, we can express \( x \) as: \[ x = \cot^{-1}(\sqrt{\cos \alpha}) - \frac{\pi}{2} \] ### Step 5: Use the cotangent identity Using the identity for cotangent, we can express \( \cot^{-1}(y) \) in terms of sine: \[ \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y) \] Thus, we can rewrite \( x \): \[ x = -\tan^{-1}(\sqrt{\cos \alpha}) \] ### Step 6: Find \( \sin x \) Using the sine of an angle: \[ \sin(-\theta) = -\sin(\theta) \] we have: \[ \sin x = \sin(-\tan^{-1}(\sqrt{\cos \alpha})) = -\sin(\tan^{-1}(\sqrt{\cos \alpha})) \] ### Step 7: Use the sine identity From the definition of sine in terms of tangent: \[ \sin(\tan^{-1}(y)) = \frac{y}{\sqrt{1+y^2}} \] we can substitute \( y = \sqrt{\cos \alpha} \): \[ \sin(\tan^{-1}(\sqrt{\cos \alpha})) = \frac{\sqrt{\cos \alpha}}{\sqrt{1 + \cos \alpha}} \] ### Step 8: Final expression for \( \sin x \) Thus, we find: \[ \sin x = -\frac{\sqrt{\cos \alpha}}{\sqrt{1 + \cos \alpha}} \] ### Conclusion The final answer is: \[ \sin x = -\frac{\sqrt{\cos \alpha}}{\sqrt{1 + \cos \alpha}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (CONCEPT-BASED SINGLE) (CORRECT ANSWER TYPE QUESTIONS)|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos

Similar Questions

Explore conceptually related problems

cot^-1[(cot alpha)^(1/2)]+tan^-1[(cotalpha)^(1/2)]=x then sin x= (A) 1 (B) cot^2(alpha/2) (C) tanalpha (D) cot(alpha/2)

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

If cot^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then sin x is tan^(2)(alpha)/(2)(b)cot^(2)(alpha)/(2)(c)tan^(2)alpha(d)cot(alpha)/(2)

If cos^(-1)sqrt(cos alpha)-sin^(-1)sqrt(cos alpha)=x, then the value of sin x is

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If cot^(-1)(sqrt(cos1))-tan^(-1)(sqrt(cos1))=alpha then the value of sin alpha is -

MCGROW HILL PUBLICATION-INVERSE TRIGONOMETRIC FUNCTIONS -SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. tan^(-1)(1//4) + tan^(-1) (2//9) is equal to

    Text Solution

    |

  2. sin^(-1)((2x)/(1+x^(2))) = 2 tan^(-1)x for

    Text Solution

    |

  3. cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(cos alpha)^(1//2)]=x then sin x...

    Text Solution

    |

  4. The trignometric equation sin^(-1)x = 2sin^(-1)a has a solution for

    Text Solution

    |

  5. If 0 le x le 1 and theta = sin^(-1)x + cos^(-1)x - tan^(-1)x then

    Text Solution

    |

  6. If x gt 0, y gt 0 and x gt y, then (tan^(-1)(x//y) + tan^(-1)[(x+y)//(...

    Text Solution

    |

  7. The principal value of sin^(-1)(-sqrt(3)//2) + cos^(-1)(7pi//6) is

    Text Solution

    |

  8. The value of cos^(-1)(-1//2) - 2sin^(-1)(1//2) + 3 cos^(-1) (-1//sqrt(...

    Text Solution

    |

  9. If tan^(-1)(sqrt(1+x^(2))-1)/x=4 then x=

    Text Solution

    |

  10. sec^(2)(tan^(-1)2) + "cosec"^(2)(cot^(-1)3) is equal to

    Text Solution

    |

  11. The equation 2cos^(-1)x = sin^(-1) (2x sqrt(1-x^(2))) is valid for all...

    Text Solution

    |

  12. If tan^(-1) 1/(1+2) + tan^(-1) 1/(1+(2)(3)) + tan^(-1)1/(1+(3)(4)) + …...

    Text Solution

    |

  13. A value of x satisfying tan^(-1)(x+3) - tan^(-1)(x-3) = sin^(-1)(3//5)...

    Text Solution

    |

  14. If x = "cosec"(tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a))))), a in [0,1], t...

    Text Solution

    |

  15. If sin^(-1) (sin(33pi)/7) + cos^(-1)(cos (46pi)/7) + tan^(-1)(-tan (13...

    Text Solution

    |

  16. If 0 lt x lt 1, the number of solutions of the equations tan^(-1)(x-1)...

    Text Solution

    |

  17. tan^(-1) (tan 4) - tan^(-1)(tan(-6)) + cos^(-1)(cos 10) is equal to

    Text Solution

    |

  18. If x lt -1//sqrt(3), then the value of 3 tan^(-1)x - tan^(-1)(3x - x^(...

    Text Solution

    |

  19. sin^(-1)(4//5) + sin^(-1)(5//13) + sin^(-1)(16//65) is equal to

    Text Solution

    |

  20. If tan^(-1)(1//4) + tan^(-1)(2//9) = (1//2) cos^(-1)x then x is equal ...

    Text Solution

    |