Home
Class 12
MATHS
If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(...

If `(x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x`

Text Solution

Verified by Experts

Let `(x(y+z-x))/(log_(a) x) = (y(z+x-y))/(log_(a)y) = (z(x+y-z))/(log_(a) z) = k`
` rArr log_(a) x = (x(y+z-x))/k`
` rArr x = a^((x(y+z-x))/k)`
Similarly,` y = a ^((y(x+z-y))/k) and z=a^((z(x+y-z))/k)`
Now `x^(y)y^(x) = a^ ((xy(y+z-x))/k)a^((yx(z+x-y))/k)`
` = a ^((xy^(2)+xyz-x^(2)y+xyz+x^(2)y-xy^(2))/k)=a^((2xyz)/k)`
Similarly,` z^(y)y^(z) = x^(z)z^(x) = a^((2xyz)/k)`.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

If z= log""(x^2 + y^2)/(x+y) then x(∂z)/(∂x)+ y(∂z)/(∂y) is :

If U = (x-y) (y-z) (z-x) then show that U_x+U_y+U_z = 0

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

If x,y,z are in G.P and a^x=b^y=c^z ,then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n (a) x^2+y^2+z^2+x y z=0 (b) x^2+y^2+z^2+2x y z=0 (c) x^2+y^2+z^2+x y z=1 (d) x^2+y^2+z^2+2x y z=1

Solve x + y = 7 , y + z = 4 , z + x = 1