Home
Class 12
MATHS
Let a= log(3) 20, b = log(4) 15 and c =...

Let `a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12`. Then find the value of `1/(a+1)+1/(b+1)+1/(c+1)`.

Text Solution

Verified by Experts

We have
`a+1 = log_(3) 20 + log_(3) 3 = log_(3) 60`
` b+ 1 = log_(4) 15 + log_(4) 4 = log_(4) 60`
` c+1 = log_(5) 12+ log_(5) 5 = log_(5) 60`
`1/(a+1)+1/(b+1)+1/(c+1)=1/(log_(3) 60)+1/(log_(4)60)+1/(log_(5)60)`
` =log_(60)3+log_(60)4+log_(60)5`
` = log_(60)(3 xx 4 xx 5)`
` = log_(60) 60`
` = 1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If log_(sqrt8) b = 3 1/3 , then find the value of b.

Prove log_(b)b = 1

The value of log_(3)""1/81 is …….

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

If log_(10) sin x+log_(10)cos x=-1 and log_(10)(sinx+cosx)=(log_(10)n-1)/2 then the value of n is (a) 24 (b) 36 (c) 20 (d) 12_

let N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3)

Prove log_(b) 1=0

The value of "log"_(a) b "log"_(b)c "log"_(c ) a is

If log_(e)4 = 1.3868 , then log_(e) 4.01 =

Solve log_(4)(x-1)= log_(2) (x-3) .