Home
Class 12
MATHS
If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(l...

If `y=a^(1/(1-(log)_a x))a n dz=a^(1/(1-(log)_a y)),t h e np rov et h a tx=a^(1/(1-(log)_a z))`

Text Solution

Verified by Experts

` log_(a) y = 1/(1 - log_(a) x)`
` rArr 1 - log_(a) y = 1 - 1/(1-log_(a) x)`
` = (-log_(a) x)/(1-log_(a)x)`
` or 1/(1-log_(a)y)=(1-log_(a)x)/(-log_(a) x)` ...(i)
` "But " z = a^(1/(1-log_(a)y))`
` rArr log_(a) z =1/(1=log_(a)y)=-1/(log_(a) x) +1`
` or 1/(log_(a)x) =1-log_(a)z`
` or log_(a) x = 1/(1-log_(a)z)`
` or x = a^(1/(1-log_(a)z)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

Given I_m=int_1^e(logx)^mdx ,t h e np rov et h a t(I_m)/(1-m)+m I_(m-2)=e

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

Draw the graph of y=1/(log_(e)x)

y=2^(1/((log)_x4) , then find x in terms of y.

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)