Home
Class 12
MATHS
If log(10) 2 = 0.3010 and log(10) 3 = 0...

If ` log_(10) 2 = 0.3010 and log_(10) 3 = 0.477`, then find the number of digits in the following numbers:
(a)` 3^(40)" "(b) 2^(22) xx 5^(25)" (c) 24^(24)`

Text Solution

Verified by Experts

The correct Answer is:
(a) 20 (b) 28 (c) 34

(a) ` N = 3^(40)`
`:. Log_(10)N = 40 log_(10) 3 = 40 xx 0.477 = 19.08`
So, number of digits in N is 20.
(b) `N= 2^(32) xx 5^(25) = 2^(7) (2 xx 5)^(25) = 2^(7) xx 10^(25)`
` :. Log_(10) N = 25 + 7 log_(10) 2`
` = 25 + 7 xx 0.3010`
` = 25+ 2.107`
` = 27.107`
So, number of digits in N is a 28.
(c) `log_(10)24^(24) = 24 (log_(10)(8xx3))`
` = 24 [3 log_(10)2+log_(10)3]`
` 24[3 xx 0.3010+ 0 .477]`
` = 24(1.38)`
` = 33.12`
So, number of digits in N is 34.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Single)|50 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

Given that "log"_(10)2 = 0.30103, " log"_(10) 3 = 0.47712 (approximately), find the number of digits in 2^(8), 3^(12) .

If log 10^(2) = 0.3010 log 10^(3) = 0.4772 find log 10^(144)

Given that log_(10)2=0.30103, log_(10)3=0.47712 (approximately), find the number of digits in 2^(8).3^(12) .

If log(2)=0.30103 find the number of digits in 2^(100)

State the number of significant figures in the following 2.65 xx 10^(24)m

If log10^(2) = .3010, log10^(3) = .4771 find log_(10)36

if log_10 5=a and log_10 3=b then:

Find the number of digits in 4^(2013) , if log_(10) 2 = 0.3010.

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .