Home
Class 12
MATHS
Prove that: 2(sqrt((log)a4sqrt(a b)+(log...

Prove that: `2(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(2/b)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 2^((log)_a bif1

A

1

B

2

C

`2^(log_(a)b)`

D

` 2^(log_(b)a)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have
` E= 2^((sqrt(log_(a)root(4)(ab)+log_(b)root(4)(ab))-sqrt(log _(a)root(4)(b/a+log_(b)root(4)(a/b)))) sqrt(log_(a)b))`
` = 2^(1/2(sqrt(log_(a)ab+log_(b)ab-)sqrt(log_(a)b//a+log_(b)a//b))sqrt(log_(a)b))`
` = 2^(1/2(sqrt(2+log_(a)b+log_(b)a)-sqrt(log_(a)b+log_(b)a - 2))sqrt(log_(a)b))`
` = 2^(1/2(sqrt((log_(a)b)^(2)+2log_(a)b+1)-sqrt((log_(a)b)^(2)-2log_(a)b+1))`
` = 2^(1/2(sqrt((log_(a)b+1)^(2))-sqrt((log_(a)b-1)^(2)))`
` =2^(1/2(|log_(a)b+1|-|log_(a)b-1|)`
Case I:
` bgea gt1`
` rArr log_(a) b ge log_(a) a`
` rArr log_(a) b ge 1`
` rArrE=2^(1/2(log_(a)b+1-log_(a)b+1))=2`
Case II:
` 1 lt b lt a`
` rArr 0 lt log_(a) b lt log_(a) a`
` rArr 0 lt log_(a) b lt 1`
` rArr E = 2^(1/2(log_(a)b+1-1+log_(a)b))`
` = 2^(1//2.(2log_(a)b))`
` = 2 ^(log_(a)b)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2^(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b) if 1

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of "log"_(a) b "log"_(b)c "log"_(c ) a is

Solve for: x :(2x)^((log)_b2)=(3x)^((log)_b3) .