Home
Class 12
MATHS
If 3^x=4^(x-1) , then x= (2(log)3 2)/(2...

If `3^x=4^(x-1)` , then `x=` `(2(log)_3 2)/(2(log)_3 2-1)` (b) `2/(2-(log)_2 3)` `1/(1-(log)_4 3)` (d) `(2(log)_2 3)/(2(log)_2 3-1)`

A

` (2 log_(3) 2)/(2log_(3) 2-1)`

B

` 2/(2-log_(2)3)`

C

` 1/(1-log_(4)3)`

D

` (2 log_(2)3)/(2 log_(2) 3-1)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

` 3^(x) = 4^(x- 1)`
` rArr log_(2) 3^(x) = ( x- 1) log_(2) 4 = 2 (x-1)`
` or x log_(2) 3 = 2 x - 2`
` or x = 2/(2-log_(2) 3)`
Rearranging, we get
` x = 2/(2-2/(log_(3)2))=(2 log_(3)2)/(2 log_(3) 2-1)`
Rearranging again, we get
` x = (log_(3)4)/(log_(3)4-1) =(1/(log_(4)3))/(1/(log_(4)3)-1)=1/(1-log_(4)3)`.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve (log)_2(3x-2)=(log)_(1/2)x

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

Which of the following numbers are positive/negative? (a) (log)_2 7 (b) (log)_(0. 2)3 (c) (log)_(1//3)(1/5) (d) (log)_4 3 (e) (log)_2((log)_2 9)

Solve (log)_(2x)2+(log)_4 2x=-3//2.

Solve for: x :(2x)^((log)_b2)=(3x)^((log)_b3) .

Solve (log)_4 8+(log)_4(x+3)-(log)_4(x-1)=2.

Solve 4^((log)_9x)-6x^((log)_9 2)+2^((log)_3 27)=0

If (a+(log)_4 3)/(a+(log)_2 3)=(a+(log)_8 3)/(a+(log)_4 3)=b ,then b is equal to 1/2 (2) 2/3 (c) 1/3 (d) 3/2

Prove that (2^((log)_2 1/4x)-3^(log)_(27)(x^2+1)^3-2x >)/(7^(4(log)_(49)x)-x-1)0