Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that `bar(OP)*bar(OQ)+bar(OR)*bar(OS)=bar(OR)*bar(OP)+bar(OQ)*bar(OS)=bar(OQ)*bar(OR)+bar(OP)*bar(OS)` Then the triangle PQR has S as its

A

centriod

B

circumectre

C

incente

D

orthocenter

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(OP) . vec(OQ) + vec(OR).vec(OS)= vec(OR) -vec(OP)+vec(OQ).vec(OS).`
`=vec(OP).(vec(OQ)-vec(OR))=vec(OS).(vec(OQ)-vec(OR))`
`implies (vec(OP)-vec(OS)).(vec(RQ))=0implies vec(SP).vec(RQ)=0`
`implies vec(SP)botvec(RQ)`
Similarly ,`vec(SR)bot vec(OP) and vec(SQ) botvec(PR).`
hence , S is orthocenter.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise Linked comprehesion type|2 Videos
  • JEE 2019

    CENGAGE|Exercise chapter -3|1 Videos
  • JEE 2019

    CENGAGE|Exercise multiple correct answers type|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos

Similar Questions

Explore conceptually related problems

Draw the magnetic field lines for a bar magnet.

In the adjacent figure bar(OP) , bar(OQ) , bar(OR) and bar(OS) are four rays. Prove that anglePOQ+angleQOR+angleSOR+anglePOS=360^(@) .

Knowledge Check

  • 0.bar(34)+0.bar(34)=

    A
    `0.6bar(87)`
    B
    `0.bar(68)`
    C
    `0.bar(68)`
    D
    `0.6bar(87)`
  • 0.bar(34)+0.3bar(4)=

    A
    `0.6bar(87)`
    B
    `0.bar(68)`
    C
    `0.6bar8`
    D
    `0.68bar7`
  • If bar(PR)=2hat(i)+hat(j)+hat(k),bar(QS)=hat(i)+3hat(j)+2hat(k), then the area of the quadrilateral PQRS is

    A
    `(5sqrt(3))/(2)`
    B
    `(1)/(2)|bar(PR)xxbar(QS)|`
    C
    `(1)/(2)(bar(PR)xxbar(QS))`
    D
    `(1)/(2)|{:(hat(i),hat(j),hat(k)),(2,1,1),(-1,3,2):}|`
  • Similar Questions

    Explore conceptually related problems

    If ABC and A'B'C' are two triangles and G, Gʻ be their corresponding centroids, prove that bar(A A') +bar(BB')+bar(C C') = 3bar(GG') .

    Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

    Express the following in the form p/q wher p and q are integers and q ne 0 (a) 0.bar6 (b) 0.4bar7 (c) 0.bar(001)

    State whether the following statements are true or false : Line bar(AB) is the same as line bar(BA ) .

    State whether the following statements are true or false : A ray bar(AB) is same as the ray bar(BA) .