Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR. `|vec(OX)xxvec(OY)|=`
The magnitude of vectors vec(OA), vec(OB) and vec (OC) in figure are equal. Find the direction of vec(OA)+vec(OB)-vec(OC) . .
The unit vector bisecting vec(OY) and vec(OZ) is
If vec(a)andvec(b) are two unit vectors, then the vectors (vec(a)+vec(b))xx(vec(a)xxvec(b)) is parallel to the vector
If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot
If the projections of vec(PQ) on OX , OY OZ are respectively 12, 3 and 4 then the magnitude of vec PQ is
Let vec(a),vec(b),andvec(c) be three vectors having magnitudes 1,1,2 respectively. If vec(a)xx(vec(a)xxvec(c))+vec(b)=0, then the acute angle between vec(a)andvec(c) is ……………
If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .
If vec a, vec b, vec c are three given vectors show that [ vec a + vecb + vec c , vecb + vec c , vec a + vec b + vec c ]=0.
A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be thre vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then vec xdot vec d=-1 b. vec ydot vec d=1 c. vec zdot vec d=0 d. vec rdot vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z
If vec a, vec b, vec c are any three mutually perpendicular vectors of equal magnitude a, then |vec a+ vec b+ vec c| is equal to