Home
Class 12
MATHS
Evaluate : ("lim")(xvec2^+) ([x-2])/("lo...

Evaluate : `("lim")_(xvec2^+)` `([x-2])/("log"(x-2))` , where [.] represents the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
0

`L=underset(xto2^(+))lim([x-2])/(log(x-2))`
When `xto2^(+),x-2to0^(+)`
or `[x-2]=0`
Also, `log(x-2)tolog0^(+)to-oo`
Thus, `L=("exact "0)/(-oo)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

Evaluate: ("lim")_(xvec2)(x-2)/((log)_a(x-1))

Evaluate: ("lim")_(xvec-2^+) (x^2-1)/(2x+4)

Evaluate : ("lim")_(xvec2)(x^2-5x+6)/(x^2-4)

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.