Home
Class 12
MATHS
Evaluate: ("lim")(xvec0) (sin[cosx])/(1+...

Evaluate: `("lim")_(xvec0)` `(sin[cosx])/(1+[cosx])([dot]` denotes the greatest integer function).

Text Solution

Verified by Experts

The correct Answer is:
0

When `xto0^(+)" or "0^(-),cosxto1^(-)`
or `" "[cosx]=0" for "xto0`
`:." "underset(xto0)lim(sin[cosx])/(1+[cosx])=(sin0)/(1+0)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xrarr0) (sin[cosx])/(1+[cosx])([dot] denotes the greatest integer function).

Evaluate ("lim")_(xvec0) (sinx-2)/(cosx-1)

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

Evaluate: ("lim")_(xvec0)(1-cosm x)/(1-cosn x)

Evaluate ("lim")_(xvec(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

Evaluate: ("lim")_(xvec0)(cot2x-cos e c2x)/x

Evaluate: ("lim")_(xvec0)(1+x)^(os e cx c)

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

Given ("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest integer function, then (a) ("lim")_(xvec0)[f(x)]=0 (b) ("lim")_(xvec0)[f(x)]=1 (c) ("lim")_(xvec0)[(f(x))/x] does not exist (d) ("lim")_(xvec0)[(f(x))/x] exists