Home
Class 12
MATHS
If f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a...

If `f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a t("lim")_(xto0)` `f(x)` does not exist.

Text Solution

Verified by Experts

L.H.L of `f(x)` at `x=0` is
`underset(xto0)limf(x)=underset(hto0)limf(0-h)=underset(hto0)lim(-h-|-h)/((-h))`
`=underset(hto0)lim(-h-h)/(-h)=underset(hto0)lim(-2h)/(-h)=underset(hto0)lim2=2`
R.H.L of `f(x)` at `x=0` is
`underset(hto0)limf(x)=underset(hto0)limf(0+h)=underset(hto0)lim(h-|h)/((h))`
`underset(hto0)lim(h-h)/(h)=underset(hto0)lim0/h=underset(hto0)lim0=0`
Clearly, `underset(xto0^(-))limf(x)neunderset(xto0^(+))limf(x)`
So, `underset(xto0^(-))limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(tan2x)/x

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

Sketch the graph of a function f that satifies the given values: f(-2)=0 , f(2)=0 , lim_(x to -2) f(x)=0 , lim_(x to 2) f(x) does not exist.

lim_(xto0)(tan2x)/(sin5x)

lim_(xto0)(e^(x)-e^(-x))/sinx

Sketch the graph of a function f that satisfies the given values: f(-2) = 0 , f(2) = 0 , lim_(xto-2)f(x)=0 lim_(xto2)f(x) does not exist.

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.