Home
Class 12
MATHS
Show that ("lim")(xto0) (e^ (1/x)+1 / e^...

Show that `("lim")_(xto0)` (e^ (1/x)+1 / e^ (1/x)-1) does not exist

Text Solution

Verified by Experts

Let `f(x)=(e^(1//x)-1)/(e^(1//x)+1)`
L.H.L of `f(x) " at "x=0` is
`underset(xto0^(-))limf(x)=underset(hto0)lim(0-h)=underset(hto0)lim(e^(-1//h)-1)/(e^(-1//h)+1)`
`underset(hto0^(-))lim(((1)/(e^(1//h))-1)/((1)/(e^(1//h))+1))=-1`
`[becausehto0implies1/htoooimpliese^(1//h)toooimplies(1)/(e^(1//h))to0]`
R.H.L. of `f(x)` at `x=0` is
`underset(xto0)limf(x)=underset(hto0)limf(0+h)=underset(hto0)lim(e^(1//h)-1)/(e^(1//h)+1)`
`=underset(hto0)lim((1-(1)/(e^(1//h)))/(1+(1)/(e^(h))))" "`[Dividing Nr and Dr by `e^(1//h`)]
`=(1-0)/(1+0)=1`
Clearly, `underset(xto0^(-))limf(x)neunderset(xto0^(+))limf(x )`
Hence, `underset(xto0)limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(1+x)^(1/(3x))

lim_(xto0)(e^(sinx)-1)/x=

lim_(xto0)(sqrt(1+x)-1)/x

lim_(xto0)"sin"(1)/(x) is

lim_(xto0)xsin(1/x) is

Evaluate : lim_(xto0)(e^(5x)-1)/x .

lim_(xto0)(e^(ax)-e^(bx))/x

Show that the lim_(xto2) ((sqrt(1-cos{2(x-2)}))/(x-2)) doesnot exist.

lim_(xto0)(1-cosx)/x^(2)

lim_(xto0)(log(1+3x^(2)))/(x(e^(5x)-1)) =