Home
Class 12
MATHS
If f(x)={{:(x","" "xlt0),(1","" "x=0),(x...

If `f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)"` if exists.

Text Solution

Verified by Experts

The correct Answer is:
0

We have `underset(xto0^(-))limf(x)=underset(xto0)limx=0`
and `underset(xto0^(+))limf(x)=underset(xto0)limx^(2)=2`
Hence, `underset(xto0)limf(x)` is equal `" to "0.`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(tan2x)/x

If f(x)={{:(|x|+1","xlt0),(0","x=0),(|x|-1","xgt0):} For what value (s) of a does lim_(xtoa)f(x) exist?

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

lim_(xto0)(xe^(x)-sinx)/x is

Find lim_(xto0)((2+x)^5-2^5)/x

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

For the function f(x)={{:(x+2", "xgt0),(x-2", "xlt0):}

If f(x)={:{(2x+1,x le 0),(3(x+1),x gt 0):} . Find lim_(x to 0) f(x) and lim_(x to 1) f(x) .