Home
Class 12
MATHS
L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dot...

`L=("lim")_(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n` limit does not exist when `a=pi/6` `L=-1w h e na=pi` `L=1w h e na=pi/2` `L=1w h e na=0`

A

`1//2`

B

`-1//3`

C

`-1//6`

D

3

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`L=underset(xtoa)lim(|2sinx-1|)/(2sinx-1)`
For `a=pi//6`.
`L.H.L.=underset(xto(pi^(-))/(6))lim(1-2sinx)/(2sinx-1)=-1`
`R.H.L.=underset(xto(pi^(+))/(6))lim(2sinx-1)/(2sinx-1)=1`
Hence, the limit does not exist.
For `a=pi,underset(xto pi)lim(1-2sinx)/(2sinx-1)=-1" "`(as in neighborhood of `pi, sinx` is less than `1/2`).
For `a=(pi)/(2),underset(xto pi//2)lim(2sinx-1)/(2sinx-1)=1" "`(as in neighborhood of `pi/2, sin x` approaches 1).
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Single)|76 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

L=(lim)_(x->a)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist when (a) a=pi/6 (b) L=-1 when a=pi (c) L=1 when a=pi/2 (d) L=1 when a=0

If L=("lim")_(xvecoo){x-x^2(log)_e(1+1/x)}, then the value of 8L is_____

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

(lim)_(hvec0)((e+h)^(1n(e+h))-e)/hi s____

("lim")_(xto0)((1+tanx)/(1+sinx))^(cos e cx)i se q u a l t o (a)e (b) 1/e (c) 1 (d) none of these

Let L_1=(lim)_(xvec4)(x-6)^x n dL_2=(lim)_(xvec4)(x-6)^4dot Which of the following is true? Both L_1a n dL_2 exists Neither L_1a n dL_2 exists L_1 exists but L_2 does not exist L_2 exists but L_1 does not exist

("lim")_(xvec1)[cos e c(pix)/2]^(1/((1-x)))(w h e r e[dot]r e p r e s e n t st h e gif is e q u a l to (a) 0 (b) 1 (c) oo (d) does not exist

Evaluate: ("lim")_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)),w h e r en in N

CENGAGE-LIMITS-Exercise (Multiple)
  1. Let f(x)={1+(2x)/a ,0lt=x<1a x ,1lt=x<2dotIf("lim")(xvec1)f(x)e xi s t...

    Text Solution

    |

  2. If f(x)=|x-1|-[x],w h e r e[x] is the greatest integer less then or eq...

    Text Solution

    |

  3. ("lim")(xtooo)(a n-(1+n^2)/(1+n))=b , where a is a finite number, then...

    Text Solution

    |

  4. If m , n in N ,("lim")(xvec0)(sinx^m)/((sinx)^m)i s 1,ifn=m (b) 0,i...

    Text Solution

    |

  5. If f(x)={x^nsin(1/(x^2)),x!=0 0,x=0,(n in I),t h e n ("lim")(xvec0)...

    Text Solution

    |

  6. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  7. Which of the following is true?

    Text Solution

    |

  8. The value of lim(nto0) [(1+2+3+...+n)/n^2] is

    Text Solution

    |

  9. If ("lim")(xto1^-)(2-x+a[x-1]+b[1+x]) exists, then aa n db can take th...

    Text Solution

    |

  10. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  11. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then

    Text Solution

    |

  12. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  13. Given a real valued function f such that f(x)={tan^2[x]/(x^2-[x]^2) ,...

    Text Solution

    |

  14. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  15. The value of lim(ntooo) [1/n+2] is

    Text Solution

    |

  16. Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less...

    Text Solution

    |

  17. Given ("lim")(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest...

    Text Solution

    |

  18. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |