Home
Class 12
MATHS
Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(a...

Evaluate `int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1)`.Here `[.]` represents the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`1/2(a^(2)-1)`

`Iltxlta`
or `0ltlog_(a)xlt1`
or `[log_(a)x]=0`
`:.I=int_(1)^(a)x dx=1/2 (a^(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x+1)/(x(x+log_(e)x))dx

Evaluate int_(1)^(2)(log(x+1))/(x+1)dx

Evaluate: int_1^a xdota^(-[(log)_a x])dx ,(a >1)dot

Evaluate int_(1)^(e)(1+logx)/(x)dx

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate int(1)/(1+e^(x))dx

Evaluate int_(1)^(e)(1)/(x(1+logx))dx

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

Solve tan x=[x], x in (0, 3pi//2) . Here [.] represents the greatest integer function.

Evaluate int(1)/(1+e^x) dx