Home
Class 12
MATHS
The value of the integral int3^6 sqrtx/(...

The value of the integral `int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx` is

Text Solution

Verified by Experts

The correct Answer is:
`3//2`

`I=int_(3)^(6) (sqrt(x))/(sqrt(9-x)+sqrt(x)) dx`………….1
`:. I=int_(3)^(6)(sqrt(9-x))/(sqrt(x)+sqrt(9-x))dx`…………2
Adding 1 and 2.
`2I=int_(3)^(6)1.dx=[x]_(3)^(6)=6-3=3`
Hence `I=3/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_(0)^(a)(sqrtx)/(sqrtx+sqrt(a-x))dx

By using the properties of definite integrals, evaluate the integrals int_(0)^(a)(2sqrt(x))/(sqrt(x)+sqrt(a-x))dx

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of integral int_0^(1/sqrt3) (dx)/((1+x^2)sqrt(1-x^2)) must be (a) 3+2pi (b) 4-pi (c) 2+pi (d) none of these

The value of the integral int_-2^(2) |1-x^2|dx is

Evaluate the integrals int(dx)/(sqrt(1+x)-sqrt(x))

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of the integral int_0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(1/4))dx is ______.