Home
Class 12
MATHS
Find the value of int0^(pi/2)sin2xlogta...

Find the value of `int_0^(pi/2)sin2xlogtanxdx`

Text Solution

Verified by Experts

The correct Answer is:
`0`

`I=int_(0)^(pi//2)sin2x log tan x dx`
`=int_(0)^(pi//2) sin2((pi)/2-x)"log tan"((pi)/2-x)dx`
`=-int_(0)^(pi//2)sin 2x log tan x dx=-1`
or `2I=0`
or `I=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_0^(pi/2)logsinthetad(theta)=k , then find the value of int_0^(pi/2)(theta/(sintheta))^2d(theta) in terms of k

Find the value of int_0^1{(sin^(-1)x)}dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Find the value of int_(0)^(100pi)sin^(-1)(sin x)dx .

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate int_(0)^(pi/2)logsinxdx

If int_0^(pi/2)logsinthetadtheta=k , then find the value of int_pi^(pi/2)(theta/(s intheta))^2dtheta in terms of k