Home
Class 12
MATHS
Evaluate int(0)^(pi)(xsinx)/(1+cos^(2)x)...

Evaluate `int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx`

Text Solution

Verified by Experts

The correct Answer is:
`pi^(2)//4`

Let `I=int_(0)^(pi)(xsinxdx)/(1+cos^(2)x)`…………..1
or `I=int_(0)^(pi)((pi-x)sinx dx)/(1+cos^(2)x)`…………2
Adding 1 and 2 we get
`2I=piint_(0)^(pi)(sinxdx)/(1+cos^(2)x)`
or `I=-(pi)/2 int_(1)^(-1)(dt)/(1+t^(2))=-(pi)/2[tan^(-1)t]_(1)^(-1)`
[Putting `cosx=t, -sinx dx=dt`]
`=-1/2[tan^(-1)(-1)-tan^(-1)]=pi^(2)//4`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(pi//2)(dx)/(4+9cos^(2)x)

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

Evaluate the integrals by using substitution int_(0)^(pi/2)(sinx)/(1+cos^(2)x)dx

Evaluate int_(0)^(pi/2)(sin^(2)x+cos^(4)x) dx

Evaluate int_(0)^((pi)/(2)) (sinx)/(4+cos^2 x)dx .

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.

Evaluate: int_(0)^(pi//4)(sin^(3)x)/(cos^(5) x) dx

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

Evaluate int_(0)^(pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)