Home
Class 12
MATHS
Evaluate: int(-pi)^pi(1-x^2)sinxcos^2xdx...

Evaluate: `int_(-pi)^pi(1-x^2)sinxcos^2xdx`

Text Solution

Verified by Experts

The correct Answer is:
`0`

Value `=0` since `(1-x^(2)) sinx cos^(2)x` is an odd function of `x`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.6|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

Evaluate int_(0)^((pi)/(2))sin^4 x cos^2xdx .

Evaluate: int_(-pi//2)^(pi//2)xsin dx

Evaluate: int_-pi^pi ((2x)(1+sinx)/(1+cos^2x))dx

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

Evaluate: int_(-pi)^pi(xsinx dx)/(e^x+1)

Evaluate int_(0)^((pi)/(2))sin^5 x cos^4 xdx.

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

Evaluate : int_((-pi)/2)^(pi/2)xcosxdx .

Evaluate int_((-pi)/2)^(pi/2)cosxdx .