Home
Class 12
MATHS
Let f:RtoR be a differentiable function ...

Let `f:RtoR` be a differentiable function having `f(2)=6,f'(2)=1/48` . Then evaluate `lim_(x to2)int_(6)^(f(x))(4t^(3))/(x-2)dt`.

Text Solution

Verified by Experts

The correct Answer is:
`16-f(4)`

`L=lim_(xto4)int_(4)^(x)((4t-f(t)))/((x-4))dt=limt_(xto4)(int_(4)^(1)(4t-f(t))dt)/(x-4)`
( `0//0` form , using L Hopital's rule)
`=lim_(xto 4)(4x-f(x))/1`
`16-f(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f: RvecR be a differentiable function having f(2)=6,f^(prime)(2)=1/(48)dot Then evaluate ("lim")_(xvec2)int_6^(f(x))(4t^3)/(x-2)dt

Let f : R to R be a differentiable funcation and f (1) = 4 . Then , the value of lim_(xto1) int_(4)^(f(x))(2t)/( x-1) dt is

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then