Home
Class 12
MATHS
Iff(x)=int((x^2)/(16))^(x^2)(sinxsinsqrt...

`Iff(x)=int_((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))dtheta,` then find the value of `f^(prime)(pi/2)dot`

Text Solution

Verified by Experts

The correct Answer is:
`pi`

`f(x)=sinx int_(x^(2)//16)^(x^(2))(sin sqrt(theta))/(1+cos^(2)sqrt(theta)) d theta`
`:.f'(x)=sinx[(sinx)/(1+cos^(2)x)2x-0]+(int_(pi^(2)//16)^(x^(2))(sinsqrt(theta))/(1+cos^(2)sqrt(theta)) d theta)cosx`
Therefore `f'((pi)/2)=pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If y(x)=int_(pi^2/16)^(x^2)(cosxcossqrt(theta))/(1+sin^2sqrt(theta)),then (dy)/(dx) at x=pidot is

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta ,then find the value of (l_(1))/(l_(2)) .

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

If cos^(-1) (1/(5sqrt(2)))= theta find the value of sin theta and cot theta

Evaluate: int_(0)^(pi//2) sqrtsinthetacos^(5)theta d theta

Let f(x)=2cos e c2x+secx+cos e cxdot Then find the minimum value of f(x)forx in (0,pi/2)dot

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If f(x) and g(x)=f(x)sqrt(1-2(f(x))^2) are strictly increasing AAx in R , then find the values of f(x)dot