Home
Class 12
MATHS
Let f(x) be a continuous and differentia...

Let `f(x)` be a continuous and differentiable function such that `f(x)=int_0^xsin(t^2-t+x)dt` Then prove that `f^('')(x)+f(x)=cosx^2+2xsinx^2`

Text Solution

Verified by Experts

The correct Answer is:
NA

`f(x)=int_(0)^(x)sin(t^(2)-t+x)dt`
`=cosx int_(0)^(x)sin(t^(2)-t)dt+sinx int_(0)^(x)cos(t^(2)-t)dt`.
or `f'(x)=-sin int_(0)^(x)sin(t^(2)-t)dt+cosx sin (x^(2)-x)`
`+cosx int_(0)^(x)cos(t^(2)-t)dt+sinx cos (x^(2)-x)`
`=-sinx int_(0)^(x)sin(t^(2)-t)dt+cosx int_(0)^(x)cos(t^(2)-t)dt+sinx^(2)`
or `f''(x)=-sinx sin(x^(2)-x)-cosx int_(0)^(x)sin(t^(2)-t)dt-sinx`
`int_(0)^(x)cos(t^(2)-t)dt+cosxcos(x^(2)-x)+2xsinx^(2)`
`=cosx^(2)-f(x)+2xsinx^(2)`
or `f''(x)+f(x)=cosx^(2)+2xsinx^(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x) be a continuous function AAx in R , except at x=0, such that g(x)= int_x^a(f(t))/t dt , prove that int_0^af(x)dx=int_0^ag(x)dx

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f:[0,oo)vecR be a continuous strictly increasing function, such that f^3(x)=int_0^x tdotf^2(t)dt for every xgeq0. Then value of f(6) is_______

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then