Home
Class 12
MATHS
If f' is a differentiable function satis...

If `f'` is a differentiable function satisfying `f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2` then the value of `f(pi)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`0`

We have `f(x)=int_(0)^(x)e^(x^(2)-(x-t)^(2))cos(x-t)dt`
`:.f(x)=int_(0)^(x)e^(x^(2)-(x-(x-t))^(2))cos(x-(x-t))dt`
`implies f(x)=int_(0)^(x)e^(x^(2)-t^(2))costdt`
`impliesf(x)=e^(x^(2))int_(0)^(x)e^(-t^(2))cost dt`…………1
Differentiating w.r.t `x` we get
`f'(x)=2xe^(x^(2))int_(0)^(x)e^(-t^(2))cost dt +cosx`
Again differentiating w.r.t `x`, we get
`f''(x)=2(e^(x^(2))+2x^(2)e^(x^(2)))int_(0)^(x)e^(-t^(2))costdt+2xcosx-sinx`
`=2(1+2x^(2))f(x)+2xcosx-sinx`
`:'f''(0)=-2f(0)+0-0=0 ( :' f(0)=0 "from" 1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is