Home
Class 12
MATHS
f(x)=int1^x(tan^(-1)(t))/t dtAAx in R^+...

`f(x)=int_1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof` `f(e^2)-f(1/(e^2))`

Text Solution

Verified by Experts

The correct Answer is:
`pi`

`f(x)=int_(1)^(x)(tan^(-1)(t))/t dt`
`:.f(1/x)=int_(1)^(1//x)(tan^(-1)(t))/tdt`
Put `=t=1//u`
`:.dt=-(du)/(u^(2))`
`:.f(1//x)=int_(1)^(x)("tan"^(-1)(1/u))/(1/u)(-1/(u^(2)))du`
`=-int_(1)^(x)("tan"^(-1)(1/u))/u du`
`=-int_(1)^(x)("cot"^(-1)(u))/u du`
`=-int_(1)^(x)(cot^(-1)(t))/t dt`
Now` f(x)-f(1//x)=int_(1)^(x)(tan^(-1)t+cot^(-1)t)/t dt`
`=int_(1)^(x) (pi)/2xx1/t dt`
`=(pi)/2 log (x)`
`:. f(e^(2))-f(1//e^(2))=(pi)/2log_(e)e^(2)=pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(c0s^2x)dx ,t h e nfin dt h ev a l u ekdot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

Iff(x)=x+int_0^1t(x+t)f(t)dt ,t h e nt h ev a l u eof(23)/2f(0) is equal to _________

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

If f(0)=1,f(2)=3,f(2)=5,t h e nfin dt h ev a l u eof int_0^1xf"(2x)dx

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot