Home
Class 12
MATHS
Find the value of int(1/2)^(2)e^(|x-1/x|...

Find the value of `int_(1/2)^(2)e^(|x-1/x|)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`esqrt(e)-1`

Let `I=int_(1/2)^(2)e^(|x-1/x|)dx`…………….1
Put `x=1/t`,
`:. I=-int_(0)^(1/2)e^(|t- 1/t|)((dt)/(t^(2)))=int_(1/2)^(2)e^(|x-1/x|)(dx)/(x^(2))`……………2
Adding 1 and 2 we get
`2I=int_(1/2)^(2)e^(|x - 1/x|),(1+1/(x^(2)))dx`
`=int_(1/2)^(1)e^(-(x-1/x)),(1+1/(x^(2)))dx+int_(1)^(2)e^((x-1/x)),(1+1/(x^(2)))dx`
`=[-e^(-(x-1/x))]_(1//2)^(1)+[e^((x-1/x))]_(1)^(2)`
`=-1+e^(3//2)+e^(3//2)-1`
`=2(esqrt(e)-1)`
`impliesI=esqrt(e)-1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(2) |x| dx

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

If int_0^1e^-(x^2)dx=a , then find the value of int_0^1x^2e^-(x^2)dx in terms of a .

Evaluate int_(0)^(1) e^(-x)(1+x^2)dx .

Find the value of int_(0)^(1)root(3)(2x(3)-3x^(2)-x+1)dx .

Evaluate int_(1)^(2)(log(x+1))/(x+1)dx

Evaluate: int (e^x - 1)^(2) e^(-4x) dx .

If int_(2)^(a)(dx)/(x^(2)-1)=(1)/(2)"log"(3)/(2),agt1 . Using the value of a, evaluate int_(2)^(a)(x)/(x^(2)+1)dx .