Home
Class 12
MATHS
L e tf:[1,oo)vecRa n df(x)=int1^x(e^t)/t...

`L e tf:[1,oo)vecRa n df(x)=int_1^x(e^t)/t dt-e^xdotT h e n` `f(x)` is an increasing function `("lim")_(xvecoo)f(x)vecoo` `f^(prime)(x)` has a maxima at `x=e` `f(x)` is a decreasing function

A

`f(x)` is an increasing function

B

`lim_(x tooo) f(x)to oo`

C

`f'(x)` has a maxima at `x=e`

D

`f(x)` is a decreasing function

Text Solution

Verified by Experts

The correct Answer is:
A, B

`f(x)=x int_(1)^(x) (e^(t))/t dt-e^(x)`
`:.f'(x) = x(e^(x))/x+int_(1)^(x)(e^(t))/t dt-e^(x)`
`=int_(1)^(x)(e^(t))/t dt gt0 [ :' x epsilon[1,oo)]`
Thus `f(x)` is an increasing function.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:[1,oo)->R and f(x)=x(int_1^xe^t/tdt)-e^x .Then (a) f(x) is an increasing function (b) lim_(x->oo)f(x)->oo (c) fprime(x) has a maxima at x=e (d) f(x) is a decreasing function

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then f(x) is an increasing function in (0,oo) f(x) is a decreasing function in (-oo,oo) f(x) is an increasing function in (-oo,oo) f(x) is a decreasing function in (-oo,0)

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(x^2)^(x^2+1)e^-t^2dt , then f(x) increases in (0,2) (b) no value of x (0,oo) (d) (-oo,0)

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

If f(x)={x^2, for xgeq1x ,for x<0 ,t h e n fof(x) is given by

Prove that the function f(x)=(log)_e(x^2+1)-e^(-x)+1 is strictly increasing AAx in Rdot

CENGAGE-DEFINITE INTEGRATION -Exercise (Multiple)
  1. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h ev a l u eofint0^oo(dx)/(1+x^4)i s s a m ea st h a tofint0^oo(x^...

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a)<1 (b) >1 (c) > e^(-1/4) (d) n...

    Text Solution

    |

  5. Ifinta^b(f(x))/(f(a)+f(a+b-x))dx=10 ,t h e n b=22 ,a=2 (b) b=15 ,1=-...

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. Evaluate int(0)^(1)x(1-x)^3dx

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)vecRa n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an ...

    Text Solution

    |

  13. Iff(x)=inta^x[f(x)]^(-1)dxa n dinta^1[f(x)]^(-1)dx=sqrt(2),t h e n f(...

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}d ui se q u a lto int0^x(x-u)f(u)d u int0^x uf(...

    Text Solution

    |

  16. Evaluate int(0)^(1) 6^x dx

    Text Solution

    |

  17. Evaluate int(0)^(2)7^xdx

    Text Solution

    |

  18. Evaluate int(0)^(1)x(1-x)dx

    Text Solution

    |

  19. Check whether the given equation is a quadratic equation. i) (x+1)^2...

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |