Home
Class 12
MATHS
Let f:[-1,2]vec[0,oo) be a continuous fu...

Let `f:[-1,2]vec[0,oo)` be a continuous function such that `f(x)=f(1-x)fora l lx in [-1,2]dot` Let `R_1=int_(-1)^2xf(x)dx ,` and `R_2` be the area of the region bounded by `y=f(x),x=-1,x=2,` and the `x-a xi s` . Then `R_1=2R_2` (b) `R_1=3R_2` `2R_1` (d) `3R_1=R_2`

A

`R_(1)=2R_(2)`

B

`R_(1)=3R_(2)`

C

`2R_(1)=R_(2)`

D

`3R_(1)=R_(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`R_(1)=int_(-1)^(2)xf(x)dx=int_(-1)^(2)(2-1-x)f(2-1-x)dx`
`=int_(-1)^(2)(1-x)f(1-x)dx`
`=int_(-1)^(2)(1-x)f(x)dx`
Hence `2R_(1)=int_(-1)^(2)f(x)dx=R_(2)`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a) R_1=2R_2 (b) R_1=3R_2 (c) 2R_1 (d) 3R_1=R_2

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f : RtoR be a function such that f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3),x in R . Then f(2) equals

The range of the function f(x)=(x)/(1+x^2),x in R , is

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

Let f be a differentiable function from R to R such that abs(f(x)-f(y))abs(le2)abs(x-y)^(3//2) ,for all x,y inR .If f(0)=1 ,then int_(0)^(1)f^2(x)dx is equal to

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

F : R to R defined by f (x) = (1)/(2x^2 +5) the range of F is

Let f: R^+ ->R be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+1/y+1) for x , y > 0. Then find f(x)dot

CENGAGE-DEFINITE INTEGRATION -JEE Advanced Previous Year
  1. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  2. Find the roots of the following quadratic equations x^2-2x-3

    Text Solution

    |

  3. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  4. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  5. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  6. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  7. Find A × B, A × A and B × A : A = {1, 2, 3} and B = {1, −4}.

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

    Text Solution

    |

  9. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let S be the area of the region enclosed by y=e^-x^2,y=0,x=0,a n dx=1....

    Text Solution

    |

  12. For a in R (the set of all real numbers), a!=-1), (lim)(nvecoo)((1^a...

    Text Solution

    |

  13. Let f be a continuous function on [a ,b]dot Prove that there exists a ...

    Text Solution

    |

  14. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  15. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  16. Given A = {2,4,5 }, B = {2, 5}, C = {3, 4} and D = {1, 3, 5}, check if...

    Text Solution

    |

  17. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  18. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  19. int(1)/(x(logx)log(logx))dx=

    Text Solution

    |

  20. Evaluate the following integrals using properties of integration : i...

    Text Solution

    |