Home
Class 12
MATHS
Let f: RvecR be a continuous odd functio...

Let `f: RvecR` be a continuous odd function, which vanishes exactly at one point and `f(1)=1/2dot` Suppose that `F(x)=int_(-1)^xf(t)dtfora l lx in [-1,2]a n dG(x)=int_(-1)^x t|f(f(t))|dtfora l lx in [-1,2]dotIf(lim)_(xvec1)(F(x))/(G(x))=1/(14),` Then the value of `f(1/2)` is

Text Solution

Verified by Experts

The correct Answer is:
7

`f(x)` is continuous odd function and vanishes exactly at one point.
`:.f(0)=0`
`F(x)=int_(-1)^(x)f(t)dt=int_(-1)^(1)f(t)dt+int_(1)^(x)f(t)dt`
`=0+int_(1)^(x)f(t)dt` (as `f(t)` is odd function)
`f(t)` is odd function
`:.f(f(t))` is also odd function
`:.|f(f(t))|` is an even function
`:. t|f(f(t))|` is an odd function
`:.G(x)=int_(1)^(x)t+f(f(t))+dt=int_(1)^(x)t|f(f(t))|dt`
Now `lim_(xto1)(f(x))/(x|f(f(x))|)` (Using L'Hospital's Rule)
`=(1/2)/(1|f(1/2)|)=1/14` (Given)
`impliesf(1/2)=7`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let ("lim")_(x to1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

CENGAGE-DEFINITE INTEGRATION -JEE Advanced Previous Year
  1. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  2. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  3. int(1)/(x(logx)log(logx))dx=

    Text Solution

    |

  4. Evaluate the following integrals using properties of integration : i...

    Text Solution

    |

  5. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)f^(-a)(1...

    Text Solution

    |

  7. Let f: R->R be a twice differentiable function such that f(x+pi)=f(x) ...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. If f:R→R and g:R→R be two functions defined as below, then find (fog)(...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  13. Let f: RvecR be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  14. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  19. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  20. Choose the correct answer The value of the integral int(1/3)^(1)((x-...

    Text Solution

    |