Home
Class 12
MATHS
The matrix R(t) is defined by R(t)=[(cos...

The matrix R(t) is defined by `R(t)=[(cos t,sin t),(-sin t,cos t)]`. Show that `R(s)R(t)=R(s+t)`.

Text Solution

Verified by Experts

`R(s)R(t)=[(cos s ,sin s),(cos t,sin t)][(cos t,sin t),(-sin t,cos t)]`
`=[(cos s cos t-sin s sin t,cos s sin t + sin s cos t),(-sin s cos t-cos s sin t,cos s cos t-sin s sin t)]`
`=[(cos(s+t),sin (s+t)),(-sin (s+t),cos (s+t))]`
`=R(s+t)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Find (dy )/(dx) if x=a ( t - sin t), y = a (1 - cos t).

If A=[{:(cos theta, sin theta),(-sin theta, cos theta):}] then "A A"^(T) is :

Find (dy)/(dx) if x =a ( t - sin t), y =a (1- cos t)

If x =a ( cos t + t sin t), y = a [sin t-t cos t] then find dy/dx .

Let A=B B^(T)+C C^(T) , where B=[(cos theta),(sin theta)], C=[(sin theta),(-cos theta)], theta in R . Then prove that a is unit matrix.

If x=a (cos t +t sin t)" and "y= a (sin t -t cos t) , find (d^(2)y)/(dx^(2)) .

Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}| .Then find lim_(t to 0) (f(t))/(t^(2))

If w=xy + z, where x=cos t, y = sin t, z=t, find (dw)/(dt) .