Home
Class 12
MATHS
If A=[[costheta,sintheta],[-sintheta,cos...

`If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n` is

Text Solution

Verified by Experts

The correct Answer is:
Zero Matrix

`A=[(cos theta,sin theta),(-sin theta,cos theta)]`
`A^(2)=[(cos theta,sin theta),(-sin theta,cos theta)][(cos theta,sin theta),(-sin theta,cos theta)]`
`=[(cos^(2) theta-sin^(2) theta,2 sin theta cos theta),(-2 sin theta cos theta,cos^(2) theta - sin^(2) theta)]`
`=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)]`
`A^(3)=A^(2) A=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)][(cos theta,sin theta),(-sin theta,cos theta)]`
`=[(cos 3 theta,sin 3 theta),(-sin 3 theta,cos 3 theta)]`
Hence, `A^(n)=[(cos n theta,sin n theta),(-sin n theta,cos n theta)]`
or `A^(n)/n = [((cos n theta)/n,(sin n theta)/n),((-sin n theta)/n,(cos n theta)/n)]`
or `lim_(n rarr oo) A^(n)/n =[(lim_(n rarr oo) (cos n theta)/n,lim_(n rarr oo) (sin n theta)/n),(-lim_(n rarr oo) (sin n theta)/n,lim_(n rarr oo) (cos n theta)/n)]`
`=[(0,0),(0,0)]=` Zero matrix
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A = [(costheta,-sintheta),(sintheta,costheta)] , then the matrix A^(-50) , when theta = (pi)/(12) , is equal to

costheta -sintheta -cottheta +1=0

If A=((costheta, sintheta), (-sintheta, costheta)) prove that AA^(T)=I

(sintheta+sin2theta)/(1+costheta+cos2theta)

If costheta[(costheata, sintheta), (-sintheta, costheta)]+sintheta[(x, -costheta), (costheta, x)]=I_(2) . Find x.

If A=[{:(costheta,sintheta),(sintheta,-costheta):}] , B=[{:(1,0),(-1,1):}] , C=ABA^(T) , then A^(T)C^(n)A equals to (n in I^(+))

Solve sqrt(3)costheta-3sintheta=4sin2thetacos3thetadot

If tantheta+sintheta=mandtantheta-sintheta=n ,then

Simplify costheta[(costheta,sin theta),(-sintheta,costheta)]+sin[(sintheta,-costheta),(costheta,sintheta)]