Home
Class 12
MATHS
For x^(2) ne npi + 1, n in N(the set of ...

For `x^(2) ne npi + 1, n in N`(the set of natural numbers), the integral `int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(2sin(x^(2)-1)+sin2(x^(2)-1)))dx` is equal to (where C is a constant of integration)

A

`log_eabs((sec.(x^2-1)/2))+c`

B

`log_eabs(1/2sec^2.(x^2-1))+c`

C

`1/2log_eabs(sec^2.((x^2-1)/2))+c`

D

`1/2log_eabs(sec.(x^2-1))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If x^2!=n pi-1, n in N . Then, the value of int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx is equal to:

Knowledge Check

  • sin^(-1)(2cos^(2)x-1)+cos^(-1)(1-2sin^(2)x)=

    A
    `(pi)/(2)`
    B
    `(pi)/(3)`
    C
    `(pi)/(4)`
    D
    `(pi)/(6)`
  • Similar Questions

    Explore conceptually related problems

    If x^2!=n pi-1, n in N . Then, the value of int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx is equal to:

    sin^(-1) ((2x)/(1 + x^(2)))

    int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

    int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x) dx is

    Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

    "If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

    int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to