Home
Class 12
MATHS
The value of int(0)^(pi)abscosx^3dx is...

The value of `int_(0)^(pi)abscosx^3dx` is

A

`2//3`

B

0

C

`-4//3`

D

`4//3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi) sin^(4) x dx is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

The value of int_(0)^((pi)/(6)) cos ^(3) 3x dx

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

The value of int_(0)^(pi)dx/(1+5^(cosx)) is :

The value of int_(0)^(pi) (dx)/(1+5^(cosx)) is :

The value of int_(0)^(pi)(dx)/(1+5^(cos x)) is…….